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TOWARD A THEORY OF PROBABILISTIC AUTOMATA WITH ENVIRONMENTS
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Claremont Graduate School
Claremont, California (U.S.A.)

The viewpoint is taken that every probabilis-
tic autcmaton is situated within a sequence of
environments which affects the initial state
distribution and the transition function. There
exists a probabilistic automaton within a deter-
ministic environment sequence (ADE) which defines
an event which is not a PCE, yet in certain non-
trivial cases the behavior of an ADE can be
simulated by a probabilistic automaton. For
probabilistic automata within random environment
sequences there is a mean equivalent canonical
representation which eliminates the randomness
due to probabilistic transition.

The traditional method to describe a system
i3 to model the behavior as it stands. The
system may not, however, exhibit identical
behavior when placed within a distinct external
situation. That is, the input and quintessential
dynamics of the system remain the same, but the
external factors have changed. These external
factors are the environment within which the
system operates. By the traditional approach a
system which performs differently within distinct
environments would have to be regarded as a
collection of distinct systems. Consideration
of automata within environments allows the various
factors which may influence the behavior of the
system to be incorporated in the model. Thus, by
this more fundamental description systems which
perform differently within distinct environments
could be identical with the difference in behavior
being attributed to the environments. Automata in
media were investigated also in (8] and [10], but
our concept is more general and includes this
earlier work as a special case.

Many biological or social systems operate

within environments which influence their behavior.

Even mechanical or electrical systems, intended
to be independent of external factors, may exhibit
such behavior. If the environment may be control-
led or the internal dynamics modified, then there
may be methods of optimizing the behavior of the
system.

Probabilistic automata (PA) are mathematical
models for finite state systems which admit at

.
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discrete intervals certain inputs and emit certain
outputs. If the system is in state s. and if the
present input is o, then the system m%y go into
any state and the probability of going to state s.
depends only on s., , and o. The output of the
system depends on}y oﬂ the state obtained. There
is extensive literature on probabilistic automata.
In this er we shall follow the notations of

(7] and ESB In particular, the formulation given
therein amounts to assuming that the set of out-
puts contains just two elements. Because of the
restriction to two outputs, these automata can be
viewed as defining (recognizing) sets of sequences
of inputs (tapes); this point of view is adopted
throughout this paper.

Probabilistic automata exhibit a behavior
independent of environmental variation. It seems
quite natural, however, to consider automata with
stochastic behavior located within environments
which affect their properties. Thus, the prob-
abilistic transition function of the system is
not only related to the present state and input,
but also to the present configuration of the
environment. Also, the initial state distribution
and final output relation may depend on their
repective environments.

This work surveys some lines of research in
Gould and Wegman [3] and Gould [1], [2]. In
this paper we develop a formulation of environ-
ments and of probabilistic automata within envi-
ronments and answer some of the basic questions
about them.

The sequence of environments may be derived
from a deterministic rule; in such a case we have
an automaton in deterministic environments (ADE).
ADE are, in general, stronger than probabilistic
automata. In an effort to find when an ADE and
a PA have the same capability, we introduce the
concept of simulation of an ADE by a PA (Theorem
2). Reduction of the environment set to certain
finite structures is also considered.

Finally, we consider the case of probabilistic
automata operating in random environments (ARE);
we assume that the realization of any environment
is governed by some probabilistic structure.
Hence, the environment sequence is a stochastic
process. We encounter the dual pature of the
randomness involved in ARE. We have that the
environments are random and that for each value
the environment assumes, the probabilistic tran-
sitions are defined. The relative frequency of
acceptance of a tape under a fixed random environ-
ment sequence is a consistent estimator of the
expected acceptance probability. Finally, we
find that there is a mean equivalent canonical
representation which eliminates the randomness
due to probabilistic state assignment and tran-
sitions. Thus, for any automaton in random envir-
onments we can find a finite automaton in random
environments with finite environment set, deter-
ministic assignment of the initial state, and
deterministic transiticns which has a state dis-
tribution equivalent in the mean for any input
tape.

1. Probabilistic Automata

In this section we present some of the basic
definitions and results from the theory of prob-
abilistic automata which will be used in the suc-
ceeding sections.

Let I be the finite input set, the alphabet,
and let I* be the class of all finite sequences of
elements of L. Let us also include A, the empty
tape, in I*. If x = 0;...0g is a tape, then the
length L(x) of x is L(x)=K. Note that L(A)=0. If
x and y are tapes, then xy will denote the tape
which is the concatenation of x and y.

Let M denote the set of all n x n stochastic
matrices "and Vn denote the set of all n-dimension-
al stochastic vectors.

Definition 1 A probabilistic automaton (PA) over
the alphabet I is a system 4 = (S,M,mng, F), where
= {sy,..., sn} is a finite set (the set of
internal states), M is a function M: Z + M (the
matrix transition functio») such that mjj(o) is
the probability of changlng to state sj under
input o given that the system is in state Sj,
mo € V, (the initial state distribution), and Fc§
(the set of acceptance states).

The function M can be extended to define the
transition probabilities for going from state s;
to state s; by a sequence x€ L*. Let M(A) = |
the r a identity. For x=0,...0¢, we obtain
M(x) by the rule M(x) = M(o;)M(03)...M(d,)

Let A = (S,M,ny,F) be a PA over alphabet E.

We define the state distribution of A after input
tape x as n(x) = mgM(x). A tape x€ L* is said to
be accepted by 4 if a sEate in F is obtained after
tape x is input. Let n° be the n-dimensional
column vector whose ith component is 1 if s;€F
and 0 otherwise. The probability that tape x

is accepted by 4 is defined aE p(x) and is calcu-
lated p(x) = n(x)nF = moM(x)nF.

A PA may be used to define sets of tapes.
These sets will not only depend on 4 but also on
an additional parameter called the cut-point. Let
4 be a PA and ) be a real number, X €[0,1). The
set of all tapes defined by A with cut-point A is
T(4,)) = {x|x€I*, 2 < p(x)}. Also, we say Uc I*
is a probab1lxst1c cut-point event (PCE) if
U = T(4,A) for some PA 4 and some A €[0,1).
is a synonym for stochastic language.

PCE

2. Automata in Deterministic Environments

We shall consider the aggregate of all config-
urations of the environment as an abstract set
denoted by E. Presently, we do not make any
stipulations as to the origin, form, structure,
or cardinality of E. As each new symbol is input
to the system, the configuration of the environ-
ment attends to the system and the probabilistic
transition ensues as a function of the input
symbol and the configuration of the environment.
We also view the initial state distribution as
a function of the environment.

Here we shall consider the case in which the
sequence of environments is specified by a deter-
ministic rule. That is, for the initial distri-
bution and the subsequent transitions, we are
given the precise condition of the environment.
Let E” denote the cartesian product of a countable
number of copies of the environment set E. The
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environment sequence is a mapping e(K) = ex€E
for K=0,1,... We also denote e by the sequence
(eg» €1s+)-

pefinition 2 An automaton in deterministic
environments (ADE) is a system A = (L,S,G,nq,F,E),
where I is the finite input alphabe;, S={sy,. SSol
is the finite internal state set, G is a mappxng
G: ZxE ~» Mn (the basic matrix transition
function), mg: E » V_ (the initial distri-
bution function), F €S (the set of acceptance
states), and £ is the set of environments

The matrix transition function M is defined
on £* x E” by the inductive recursion rule:

1. M(Ae) =1, Ve € E

2. if x € I* such that L(x)=K and e € B,

then M(xo,e) = M(x €)G(o,ek4+1) -
Hence, for all x €
M(x, _e_) . H G(oj, ej),
i=1

where x = 0)...0¢ and e = (eg,€y,...).

The state distribution of 4 within environ-
ment sequence e after input tape x is computed as
with PA except the relevant quantities depend on
the environments. Thus, we obtain no(e) =
no(ep)M(x,e). Similarly, p(x,e) = w(X, eyn is
the probability that 4 within environment sequence
e accepts tape x. Clearly, these functions do not
depend on environments beyond the input symbols.

An ADE may also be used to define sets of
tapes in a manner similar to that of PA except
that the set defined will depend on the environ-
ment sequence.

Definition 3 Let A be an ADE and A be a real
number, X € 10,1). The set of tapes T(4,e,\) =
{x|x € £*,1 < p(x,e)}is called the set of tapes
defined by A within environment sequence e with
cut-point A.

We now study the problem of whether it suffices
to ignore the extension of ADE with the set of
acceptance states related to the environment.
Logically, we restrict the relationship to the
environment concurrent with the terminal input
symbol of any tape. Let us order the 2" subsets of
S gnd let 4j (e) be the probability that FJ, the
j=1 subset of S, is the set of acceptance states
when the environment concurrent with the terminal
input symbol is e. Let T(4,e,)) be any set of
tapes defined by an extended ADE A=(%,S,G,ny,$,FE)
within environment sequence e with cut-point A and
with the set of acceptance states related probabi-
listically to the terminal environment by ¢.

Consider the ADE B with n2" states over the
same alphabet, with the same environment set, and
mof(eg)=(n (e )9, (eg)s -+, "o(€0)9,,(€0))

G(o,e)¢1(e) G(o,e)é2(e) " *G(a,e)¢,n(e)
Plo,e) = |G(a,e)e1(e) Glo,e)92(e) - -G(o,€)4,n(e)
G(s,e)81(e) G(o,e)42(e) " *G(o, €} ,n(e)
ntt
nFB- 9?? , where my and G are defined in 4.
n

It is easily verified that for any x € I* and

e € E” the probability that x is accepted by 4
within environment sequence e is identical to the
probability that x is accepted by B within environ-
ment sequence e. So T(4,e, A) = T(B,e,)) for all
eeE““andauxetox) But B is an ADE as in
definition 2; that is, B has a constant set of
acceptance states. Hence, we have the following
result.

Theorem 1 Every set of tapes which can be defined
by an extended ADE with the set of acceptance
states related probabilistically to the terminal
environment can be defined by an ADE with a con-
stant set of acceptance states.

Another possible extension is to allow the
components of n ) to be arbitrary numbers in
the interval [0,1]. However, for any e é E, an %
is contained in the convex hull of nl,n ,n 2.
So n e)can be represented as

20 F:
nF(e) = ¢j(en J with
j=1
zn
0= ¢5(e) =1 and .El oj(e) o
J-

It follows as a corollary to theorem 1 that the
class of sets of tapes defined by these automata
is identical to the class of sets of tapes defined
by ADE as in definition 2.

Probabilistic automata can be considered as a
special case of ADE in two ways. First, for any
PA A = (S, M, mg, F) over I we can define an ADE
B with any nonempty environment set E such that
no{e)} = mq and G(o,e) = M(o) Vo € I, Ve € E. Such
an ADE is not influenced by the configuration of
the environment. Hence, for any \ ¢ fo,1),

T(A,)) = T(B,e,)\) Ve € £, Alsc, for any PA A we
can define an ADE with any nonempty environment
set £ such that for some eg,e € E my(eg) = mp and
G(o,e) = M(o)¥o € L. For the environment sequence
e = (eg,e,e,...) we obtain T(4,)) = T(B, e 1) for
every A € [0,1). Thus, every set of tapes
definable by a PA can be trivially defined by an
ADE in either of two ways.

Let I = {o}. Paz [6] demonstrated that there
exists U ¢ I* which is not a PCE. Consider a
two state ADE A over alphabet I, where

l-e e
E = {0,1}, mg(e) = (1-e,e), G(o,e) = o e]Veeb’
and “F «[0 . The elements of I* are of the form
oK for s K2 0. Let V be any subset of I¥;

then V = {oK1, oKz .
Sl e K-K1 for some i

ko {0 otherwise

that V = T(4,e,0). Since V is arbitrary, every

subset of this particular I* is definable by 4

within some environmental sequence. But U cC I*

it is clear

is not definable by a PA. Thus, the class of

f
automata in deterministic environments produces a x
strictly larger class of definable sets. Whits Sectiba
Sutf Sectioa O
3. Simulation D
Let A be an ADE with finite environment set. N

We shall construct an effective procedure to find

a PA which simulates the operation of 4.
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Definition 4 A PA A' over alphabet L' simulates
the ADE 4 = (Z,S,G,woFbE) if there is a relation R
between L'* and I* x E such that
1. for any (x,e) € L* x E” there exists
x' € £'* such that (x', (x,e)] € R;

2. if [x',(x,e)] € R, then for each A€[0,1),
x' € T(A',)) iff x € T(A,e, A

3. if for some A € [0,1) x' € T(4',1), then
there exists (x,_) € I* x E_ such that
[x', (x,e)] €

If a PA A' simulates the ADE A, given any input
tape x for A within environment sequence e, we
have a rule R to find an input tape x' for 4' such
that x' has the same acceptance probability as x
for A within some environment sequence e. We say
a tape x' € I'* is admissible if and only if there
is an input tape x for 4 within some environment
sequence e from which the rule R will yield x'.
By condition 3 above we see that tapes which are
not admissible do not belong to any set defined by
A': that is, if x' is not admissible, then
p'(x') =

For any tape x € Z* with L(x) = K = 0 only the
environments eg,ej,...,ex influence the acceptance
probability. Hence, the relation R need only
depend on x and eg,€),...,€g.

We shall use the notation #(A) to denote the
cardinality of the set A.

Theorem 2 Let 4 = (£,S,G,mg,F,E) be an ADE such
that #(£) < . There exists a PA A' over some
finite alphabet L' which simulates 4.

Proof: Let m = #(Z) and u = #(E). Without any
Toss of generality we shall let £ = {1,2,...m}
and E = {0,1,...,u~-1}. Consider £'={0,1,...,
u(m+1)-1}. Let £5 = ZU {0}. We now define a
mapping g: Lo x £ » L' as follows:

glo,e) = e +op Ve € E and Vo € Ip. We
extend the definition of g to (I¢ x E)*, the set
of all finite sequences of elements Iy x E, by
component-wise application and concatenation of the
results. The extension of g is one-to-one cor-
respondence between (£g x E)* and L'*. If b is any
nonempty element of (IpxE)*, then b is isomorphic to
(y, (eg,.-.,eg)), where for some K20, y € Iy*,
L(y) =K + 1, and ep,...,ey € E. We define the
relation R to be the set of all elements of the form:

[g(ox,(ep, .. ,eg)), (x,e)]

where x € £*, L(x) = K, e = (eg,..., i , and
= Oks- Clearly, for each (x, e) ( E*x E  there
exists a unlque x' = g(0x, (e ,....eK)), where

K = L(x), such that [x',(x,e)] € R.

Now we shall construct a PA A' = (S',M',mp',F')
over L' to simulate A. Let S' = S('{sp+1, sn.z)
For any o' such that 0 < g' < u-l we define

.0 1

0 el

.0 1

BECOMT Bl ola s 5w e o B e e e 6
mo( (o) - - - no(n)(o'x 00

0 Ce e 0 .0 1

where no(i)(a') is the ith component of wg(c').
Note that 0 <= o' < u-1 implies o' € E. For
u <o’ < u(mel)-1, define

e —— e

9 0

sig ey 2 2

Mrla) b o et
B e s w0 1
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Let mny* = (0,...,0,1,0) and F' = F. Therefore,

£

Suppose [x', (r,e)] € R Therefore, x' =
g(0r,ep) = g(0, eo) = .
P'(x') = mp' M' (eq)n = (no(eo),O.O)nF'
= mo(eo)nf = p(A,e).
Thus, if [x', (A,e)] € R, then for each A € [0,1),
x' € T(A',)) iff x € T(A,ge,1).

Suppose [x',(x,e)] € R, where x # A. Hence,
L(x) > 0. By definition of R we have that x' =
g(0x, (eg,...,ex)), where x = 0)...0x has length
K> 0. Sox'=g(0,e0)gloy,e1)...g(0x, €
€g0}...0" K» Where u = 0j < u(m+1) - l.for =L, ..K,
Thus, p'(x') = my'M'(eqo;" ..oK')n

= mp'M (eg)M'(oy".. UK')n . But
¢ 9 0
b | gl ‘4
M'(0y'...0g") -fTT :

0 ...0
0 o
M(x,&) i 0 0
. 0.0 o1
0..0 “0 1

Hence, we obtain p'(x') = mg(eg)M(x, e)n = p(x,e).
So, in this case, we have x' € T(4',}) iff
x € (0,1).

We have verified that Vx € I* and Ve € E® if
[x',(x,e)] € R, then for each X € [0,1];

x' € T(A',)) iff x € T(A,e,N).

Let x' € L'* be any tape for A' such that
there does not exist x € L* and e € E* so that
x5 (x e)] € R. The tape x' is not admissible.
Yet x' = g(b) for some b € (Zg x E)*.

A', the empty tape for A', is the image under
g of the empty tape in (Ig X E)‘F, Clearly, A' is
not admissible and p'(A') = mp'n’ = 0. Hence,

A' £ T(A',A) for any X € [0,1).

Let x' € L'* be any nonempty tape which is not
admissible. x' = gg'...0¢' is the image under g
of some element b € (Ly x E)*, where b has the
form (y, (eg,.-..eg )) and L(x') = L(y) = K + 1.
Note that y € Ip*. Let y = tg11...7 x' is not
admissible iff t1qg # 0 or t; £ L for some i=1,...K.
If 19 # 0, then u < op' < u(m*l) 1. So A' enters
the absorbing state sp+2 € F' at the first transi-
tion. So x' £ T(4',A) for any A € (0,1). If
13 £ L for some i = 1,...,K, then Ty = Hence,
0 =0’ =u-1and 4’ enters state s o at the
(i+1)- th transition. Again, we have x' € T(4',1)
for any A € [0,1).

Thus, if for some A € [0,1), x' € T(4',1), then
x' is admissible; that is,there exists (x,e) € L*x
such that (x', (x,e)] € R.

Consequently, A", as constructed, silulltesA o
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The results of theorem 2 and the previous sec-
tion seem to offer a paradox. We have found a set
of tapes U c I* defined by an ADE A with finite
environment set which is not a PCE. So for any
» € [0,1) there is no PA Ap such that U = T(4p,A).
But by theorem 2 there exists a PA A' over an
expanded alphabet ' such that A4' simulates 4.

Let U' = U {g(0x,e) | x € T(4,2,))}. U'=T(4',A}
eEE™

and, hence, is a PCE. We not only have expanded I

to L' but also enriched the internal essence of the

system with a structure that had been included in

the environment. The problem for U ¢ I* remains.

U # U' and U' has a different character within I'*.

If fact, U as a subset of I'* is a set of inadmis-

sible tapes and is not defined by A'. In general,

from theorem 2 we obtain T(A',\) = eng(g(Ox,g)

x € T(A,e,A\}. Moreover, for any inadmissible tape
x' for A" (this must include T(A4',))) we can obtain
a tape x and a class of environment sequences with-
in which the probability of acceptance of x by 4
exceeds A.

Given any arbitrary n-dimensional vector §, we
define |£| = max |g;|. Also, for any n x n matrix
Q, we define [Q| = max [qjj]-

For any ADE 4 = fZ,S,G,uU,F,E) consider the
seudo-metric d(e,e') = max (lwo(e)-no(e'),ma§
TG(a,e)-G(o,e')l), where e,e' € E. The o€
environments e and e' have identical influences on
the system iff d(e,e’} = 0. The environment set
is irreducible iff d is a metric.

Suppose E is reducible to a set Ft. That is,
there is an onto mapping h:E + Et C E, where if
h(e) = et, then d(e,et) = 0. The mapping h is
unique only when £+ is irreducible. h can be
extended to h: E® » (Et)® by component-wise
application.

Corollary Let A = (£,S,G,mq,F,E) be any ADE, then
T(4,e,%) = T(A,h(e),)) for all e € E” and A € [0,1).
Furthermore, if #(h(EF)) < =, then 4 can be simu-

lated by a PA.

Proof: Since it is clear that p(x,e) = p(x,h(e))
Vx € I* and e € E, it must be that T(4,e,)) =
T(A,h(e),)) for any A € (0,1). For #(h(E)) <= ,
by theorem 2 there exists a PA A' which simulates
the ADE 4+ = (ZL,S,G,m,F,Et). Thus, there exists a
relation Rt between L'* and (I x Et)* satisfying
definition 4. Define the relation R between L'*
and (£ x E)* by the rule:

[x',(x,e)] € R iff [x',(x,h(e))] € Rt .

It is easily verified that R is the relation to
justify that A' simulates 4. o

Suppose we have an ADE 4 = (Z,S,G,nq,F,E), where
E and some binary operation form a semi-group.
For each o € I, let the mapping G(o,*): E + M, be
a homorphism. Clearly, for each 0 € L G(o) =
{G(o,e)|e € E} is a semi-group with the operation
multiplication. If the semi-group of environments
can be generated by a finite set, then A may be
simulated by a PA.

Theorem 3 Let A = (£,S,G,mg,F,E) be an ADE such
that:
1.

E = S(F,°), where F is any finite set and
S(F,°) denotes the semi-group generated by
F and the operation o;

841

2, for any o € I the mapping G(g,*): E + M is
a homomorpnism;
3. mp{*) is a constant,

Then there exists a PA A' which simulates 4,

Proof: Let x € I* and e = (eqg,ey,...) € E™,
Suppose L(x) = K. Each e;, i=1,...K, has a finite

decomposition ej = f;, © ...e firi .
f oo - BT
Thus, M(x,e) = Goj,ei) =TT T G(oifij).
i= i=13=1
Let xt = olr‘ > { o, K and1 : let f be any

environment sequence with initial terms f,f;;,...
fip.s f21r"fKrK' where f € F is arbitrary. Then
A

p(x,€e)= p(xt,f). Hence, for all A € [0,1),

x € T(Ad,e,)) iff xt € T(4,£f,)). Clearly, for any
decomposition of the environments the corresponding
derived input tape will have identical acceptance
properties.

The ADE At = (I,S,G,mp,F,F) has finite environ-
ment set and so we have a relation Rt between I'*
and I* x whereby a PA A' simulates At. Define
the relation R between I'* and I* x E as follows:

[x',(x,e)] € R iff [x',(xt,£)] € Rt
for any decomposition of e and its corresponding
derived input tape xt.
It is easily verified that R is the relation to
justify that A' simulates A. o

Continuous-time probabilistic automata as
introduced by Knast E4] are seen to be a special
case of the ADE if we consider the time interval
for an input to a continuous-time PA to be the
environment which attends to that input. Moreover,
the environment set £ = [0,») and the operation
addition form a semi-group and the transition
function is a homomorphism for each o € L. How-
ever, there is no finite set which generates [0,«)
by the operation of addition. Knast showed, how-
ever, that under certain conditions a continuous-

time PA can be approximated by an ADE Ay = (Z,S,
G,mg,F,E), where my is constant and E, = {h,2h,..]}
for h > 0. Clearly, Ey = S(h) by the operatior
addition ?ﬂd for any 0 € L and e € Eh' G(o,e) =
(6(o,h))® Hence, the approximation may be
simulated by a PA.

4. Automata in Random Environments

We shall now assume that the realization of
the environment is governed by some probabilistic
structure. Hence, the sequence of environment con-
figurations is a stochastic process. This formu-
lation is useful when we are only able to make
certain probzhilistic assumptions about the occur-
rence of any environment configuration or when the
environment configuration can only be measured by
statistical techniques.

Let A4 = (Z,S,G,ng,F,E) be an ADE. Let (Q,B,P)
be a probability space. For each j € {0,1,...}=J,
let z; be a measurable function from (Q,B) to
(E,B'J, where B' is a o-field of subsets of E. The
family of random variables Z = {z.[|j € J} is an
environmental stochastic process %ESP) and 2z
denotes the random variable for the configuration
of the environment attending to jEE input symbol.
Let us assume that the mappings wg:E+V, and G(o,*):
E+Mn Yo€L are measurable; hence, the compositions
mo ® 29 = mg(2¢) and G(o,*)ez; =G(0,23),)=1Vo€L, are
measurable; they are random”stochactic vectors and
random stochastic matrices respectively.



Definition 5 An automaton in random environments
(ARE) is a system (4,2), where 4 is an ADE and 2
is an ESP.

Define z: @ + £~ by z(w) = (2g(@,21(®),...).
The mapping z is a measurable map from (2,B) to
(E°,8'™), where B'” is the smallest o-field
generated by the measurable cylinders. For x€r*
such that L(x) = K we define the random matrix
transition function K

M(x,2(w) = Hx G(0;,25(w)) -

Similarly, we have ﬂ(x,i(w}) = mo(zg(w))M(x,2z(w))
and p(x,z(w)) = 7(x,z(«})n". Furthermore,
T(4,2,)) for any A € [0,1) is a set function of
w € 9 taking values in the set of all subsets I*.
As can be seen by theorem 1 there is no strict
generalization in allowing the set of acceptance
states to be related_to the terminal environment.
Suppose z. 1), z . are independent iden-
tically distributed (IID) sequences of random
environments.  Thus, for any fixed, but arbitrary
x € I*, {p(x,i(l))}? is a sequence of uniformly
bounded IID random variables. By the strong law
of large numbers we obtain

lim 1 p(x,gﬂi)) = E p(x,2) a.s.
N N i=1

Definition 6 Let {(4,Z) be an ARE and A a real
number, A € [0,1). The set of tapes ET(4,z,}) =
{x|x € ¥, A < E p(x,2z)} is called the expected
set of tapes defined by (4,Z) with cut-point A.

Let us define the random variable y(8) = 6 on
the probability space ([0,1], B[0,1],u), where
B{0,1] is the relative Borel field and u is Lebes-
gue measure. For any fixed, but arbitrary xe€r*
and e € E°, we define the random variable

1 if y(8) = p(x,e)

I(x,e,¥(8)) = {q otherw}se di :

I(x,e,¥) is measurable and u(ell(x,g,w(e)) =1} =
p(x,e). Thus, I(x,e,¥),which has the same relevant
probability structure as an indicator that A within
environment sequence e is in a state in F after
input x, has expectation E I(x,e,y) = p(x,e). So
for an ADE the relative frequency of acceptance
estimates the acceptance probability.

Now consider the composition mapping I(x,z,y)
defined on the product space [0,1] x @, where

2 J1 if y(e) = p(x,z(w})
I(x,z(w),¥(8)) 0 otherwise
We now obtain E I(x,z,¥) with respect to the pro-
duct measure

El(xrlnt) - I(X,i(m),W(e))d(U‘P).

L0,1]xQ
By Fubini's theorem 7
EI(x,2,¥) = 1(x,2z(w),¥(8))du(8)dP(w)
a [o,1]
- J p(x,2(w))dP(w)
2
= Ep(x,2),

where the last expectation is taken with respect
to (,B,P). Supposing {(5}1), 0(12}}T afe indepen-
dent copies of (z,), then {I(x,i 1), (¢} 13

is a s:guence of random variables IID according to
the product measure u » P. Thus, the relative

frequency of acceptance of x by A4 within IID en.
vironment sequences is a strong consistent unbi-
ased estimator of Ep(x,z). Furthermore, when
there is no additional information as to the rea).
izations of the environment processes, the margin.
al distribution of the frequency of acceptance of
x based on N repetitions is a binomial random
variable with parameters N and Ep(x,z). Accord-
ingly, we are able to statistically decide whether
x € ET(4,z,)\) for all X # Ep(x,2).

Let (4,2) be an ARE, where 4 = (I,S,G,7g,F,E)
and Z is a v state homogeneous Markov chain with
initial distribution a and transition matrix Q.
Consider the PA B over I with nv states and

mp = (mp(1)ag,...,m0(V)a)

G(Unl)qll B N G(U.“)le
M(o) = 5 .
G(a,l)q\n 5 G(a,v)qW
Ry X
e i f -
of

It is left to the reader to verify that Ep(x,z) =
(x) ¥x € T*. Hence, if (4,2) is an ARE with Z

as a finite homogeneous Markov chain, then
ET(4,z,)) is a PCE for all A € [0,1). In other
words, if a PA over a singleton alphabet generates
the random environment sequence, then the expected
set of tapes defined for any cut-point is a PCE.
This generalizes the result of Turakainen [9] that
if the generator is a finite automaton over a
singleton alphabet, then the set defined for any
cut-point is a PCE.

If the environment random variables within the
sequence are independent, we find

Ep(x,2) = (Eﬂo(lo))[JW;EG(oi,zi)}nF
i=

for any x € I* and such a result defines an ADE.
Furthermore, if there are only a finite number
of distinct distribution functions corresponding
to the environmental random variables, then the
ADE can be simulated by a PA 4'. In the'parti-
cular case when z is a sequence of IID random
variables, we obtain T(A',\) = ET(A,i,A)VAECO.l).

S. A Canonical Representation for Automata in
Random Environments

In section 4 we encountered the dual nature
of the randomness involved in automata in random
environments. The environment sequence is random
and for each value the environment sequence as-
sumes, the probabilistic state transitions are
defined. Hence, the state of the system after
an input tape within a random environment sequence
is a function defined on a product probability
space. We shall show that for any ARE (4,2) there
is an ARE (4p,Y) over the same alphabet whose
transition probabilities are equivalent in the
mean, but the state of (4p,Y) obtained after an
input within a random environment sequence is
only related to the value the random environment
sequence obtains. The essence of the machine
within 4p is deterministic. To accomplish this
we need that the initial distribution function
and the basic matrix transition take on values
which, in addition to being stochastic vectors and

- : * =~ . -~ ”nﬂ--~q-q~n'~p?woq-.—-q-.




matrices, respectively, have components that are
either 0 or 1. Thus, the only randomness in the
system (4p,Y) is the randomness of the environment
sequence. We shall also construct (AD,Y) to have a
finite environment set.

Let D(M,) denote the subset of M_ such that if
M € D(M,), then m;.= 0 or 1. Also, Tet D(V,) be
the subset of Vp s&ch that if v € D(V;), then
vi = 0or 1.

Theorem 4 Let (4,2) be an ARE, where 4 = (L,S,G,
mo,F,E) 1s an ADE and 2 = {z:;|j € J} is an ESP
defined on (9,B,P) taking values in E. There
exists an ARE (4.,Y), where Ap = (Z,S,H,po,F,E")
is an ADE and Y = {yj|j € J} is an ESP defined on
some (Q',B',P') taking values in £' such that
(AD,Y) satisfies the following properties:

1. H: T x Q' +D(Mp)

2. pg: @' » D(V,)
3. #(E') < =
4. En(x,z) = Ep(x,y) Vx€L*, where y=(yq,y1,..)
5. ET(4,z,)) = ET(4,y,)) vie[o0,1).

Here we are using m and o to denote the state
distributions of (4,2) and (4p,Y), respectively.
Recall n = #(S). Notice that knowledge of the
input x and the environment sequence y(w') deter-
mines the state of Ap obtained.

Proof: For any o € L and e € E we can decompose
G(o,e) into a convex linear combination of p=n2-n¢1
elements of D(M,). Thus,

P

'21 aio(e)Bic(e) = G(o,e)

1:
for each 0 € I and e € E, where Bj,(e) € D(M,),
ajq(e) 20 and

P

L ajg(e) = 1. So for each e € E we have gener-
i=1
ated the following arrays of numbers and matrices:

“lo,(e)' p apal(e) Blol(e)' v 'Bpol(e)

°lu‘(e)' “ » °pam(e) Blcm(e). S .Bpom(e)
where m = #(I) . pFor any iy,...,ip=1,...,p let
ae(il,...,im) = j=1°i'cj(e)' Now consider

A(e) = {ag(iy,....,ig)|d1,...,ip = l....,p)L as 2
list of numbers. A list differs from a set in that
redundancy is preserved. Now for any e € E,
clearly ae(xl...,xm)zo and £ o Em ae(ll...im)=l.
For each og €L, we partltion A(e) into p

sublists Alo (e),...,ApaK(e), where
Aiax(e) = f‘e(‘l':'-' ‘K-l‘l‘lKOI""lm)l :
ll"""K-l'iK0l""’im LRI )
We obtain the sum of the elements of the list
Aiax(e)- [1...ixf1 ixfi..i: ae(il....ix_l,i.
KOI""'in)

a, (e) £.... _I..Z T[] a, ofe)
log " iy ik iger im gk ‘jq(

i

(e)

These are p™ eler nts in the list A(e). We now
construct the list A'(e) = {a'j(e)[i=1,..,pm}

iOK

——

Fori = 1 ¢.Pl(ij-1)pj'l,set a'j(e) = agliy,.-»im).

This unlqueiy describes each element of A'(e) and
A'(e) = A(e). For each og € I, we partition A'(e)
into p sublists A'lcx(e),...,A' oy (€), where
a'j(e) € A'jop(e) = iff ag(iy,.-.,ik-153riKels
ce.yip) € AjoK(e) and

i=1+ (j-1pk1 + L (ip-1)p™-l. Actually,
A’jaK(e) = AjOK(e). Thus, we have reordered A(e)

and maintained the properties of the partitioning.
We now construct the list B'(e) = {Bj,(e) |
0€L,i=1,...,p"}L by the rule:
1. Set i=1 and K=1
2. a'j(e) must belong to one of the sublists
A'lok(e)""'A'pGK(e)‘ say A'jaK' Set
B'ioK(e) = BjOK.
3. Delete one occurrence of a'.(e) from the
list A'~°K(e), but let the gmended list
retain lhe name A';, (e).
4. Increase the value of i by 1.
5. If i < pM, go to step 2. If not, go to
step 6.
6. If K < m, then set i=1, increase the value
of K by 1, and go to step 2. If not, stop.
This algorithm must necessarily terminate in
mp™ iterations with the sublists/empty.
We obtain for each e € E'm m
1. s'i(e)zo. Mmoo, P igl a'i(e)=l
2. For each g € L , A'(e) can be partitioned
into p sublists A' (e),...,A' (e) such
that I a'i(e) =a, (e). Pe
jo
a'i(e)EA;.°
3. B'., (e)ed(M.) §-=1,...,p“’ Vg€ 2 and
B, e)-Bjc( ) 1 is an index of an ele-
méflt in AL ().
Also for any 0€Z and e € E.

1a'i(e)B'io(e) Bjga'j(e)

j=]l ¢ z 1
) a'j(e)€A jc(e)

f B. (e) Z a'j(e)
g L L}
J a i(A jq(e)

i

j=1

jglsjo(e)ajo(e)sc(o,ey

Hence for each e € E we have the following

arrangement:
a'l(e) B'lal(e) CRC B'lon(e)
a' () B8 B )
m pno1 PnUn
Since D

“ =D(M_)x--+xD( n), the Cartesian
product of DUV’T with itself m times, is a finite
set with n™™ distinct elements, we can order it in
a systematic way. Let D, be the kth element of
D - by our ordering. Fgr each e € E and K=1,...,

n

" define I (e) = (i (B';  (e),...,B;  ())=D;}.
Note that Il(e),...,l nn(e) *s a partitisn of the
set {1,2,...,pm}. Thﬂs.we set

[ 1 a'(e) if I (e) #9

B (o) .{iEIk(e)
0 if Ix(e) =9




Hence, B, (e)20 for K=1,...,n  and for all e € E.

Also, fol each e € E,

Kolmogorov's Existence Theorem we defin the
process Y = {y. |

distributions

Ply. =K, ,..5Y. =K }= I e Voo 2 V8P,
P ey Va6 N e

where j ..,J_ € J are all distinct. If same

ji=0' réplace EK.(Zj.) by YK.(zo)'
Let x € I* be ah input fape of arbitrary

length, say x = Tyere T Ty €Z i=Y,...,r.

T b

By construction
En(x,y) = é KEQ;KO)H(rl,xl)---H(rr,xt)

o r

= E...E po(Ko)H(Tl,Kl)...H(Tr.xr)
T

i...% P o (KIH(T K ) o+ H(T K )
0 T Yy (28, (Z.)..uBg (X )dP
K0 o Kl 1 Kr r

T Sy,

('I( oo(xo)vko(zo))(lz( By, (2 (1K)

l

o 1
.-.(E er(zr)n(xr,xr))dp
b 1
L “0(10)6(11.21)...G(tr,;r)dp

N(x,2)dP = EN(x,2)

D— D—

where all sums are from 1 to n"n.
Clearly, it follows that ET@A,;,A)-ET@AD.sz)
vx € [0,1) o

j € J} by the finite dimensional

As a special case we see that a PA can be
viewed as a finite automaton subject to the in-
fluences of an IID random environment sequence,

n
Is(=] ] a ()= f a';(e)=1 and
K=l k=1 i€l (e) i=l REFERENCES
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